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Abstract: In recent years, the increasing of non-dispatchable resources has posed severe 

challenges to the operation planning of power systems. Since these resources are random in 

nature, the issue of flexibility to cover their uncertainty and variability has become an 

important research topic. Therefore, having flexible resources to cover changes in the 

generation of these resources during their operation can play an essential role in eliminating 

node imbalances, system reliability, providing the required flexible ramping capacity, and 

reducing system operating costs. Among flexibility resources, there are quick-act 

generation units such as gas units that can play an important role in covering net load 

changes. Also, on the demand side, the optimal design of demand response programs as 

responsive resources to price and incentive signals, by modifying the system load factor can 

prevent severe ramps at net load, especially during peak load hours, and as a result, increase 

system flexibility while decreasing operational cost of the power system. In this paper, 

unlike the existing literature, the effect of the mentioned flexibility resources (both on the 

generation side and the demand side) in day-ahead operation planning under high 

penetration of wind generation units has been studied on the IEEE RTS 24-bus test system. 

Also, for this scheduling, a mixed-integer, two-stage, and tri-level adaptive robust 

optimization have been used, which is solved by column-and-constraint generation 

decomposition-based algorithm to clear the energy and ramping capacity reserve jointly. 
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Nomenclature1 

Sets and Indices 

B Set of bus indices. 

Bw Set of buses indices in which the wind 

generation unit is located. 

BEDRP Set of selected buses to implementing 

EDRP. 
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BTOU Set of selected buses to implementing the 

TOU program. 

b Index of buses. 

I Set of generation unit indices. 

IQA/NQA Set of quick-act/non-quick-act generation 

units indices. 

Ib Set of indices of generation units located 

at bus b. 

i Index of generation units. 

L Set of indices in power transmission lines. 

l Index of power transmission lines 

T Set of indices of time periods. 

TEDRP Set of indices of time periods that EDRP 

is implemented. 

t Indices of time periods. 

Lin Set of linear segments for EDRP cost 

function. 

SG Index of linear segments for EDRP cost 

function. 
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Parameters 

,dn up

bt btp p 
 

Maximum down/up fluctuation of wind 

generation in bus b and time t [MW]. 
SG

bt
 

The length of each linearized interval in 

EDRP. 

,FRD FRU

it itC C
 

Downward/ Upward spinning flexible 

ramping reserve cost of unit i at time t 

[$/MW/h]. 
FRN

itC
 

Non-spinning flexible ramping reserve 

cost of unit i at time t [$/MW/h]. 

,su sd

it itC C
 

Start-up and shut-down cost of unit i at 

time t [$]. 

,f v

i ic c
 

Fixed cost [$] and variable cost [$/MWh] 

of unit i. 
min

btC  

The minimum cost of participating energy 

in EDRP [$]. 

btD  Forecasted demand bus b at time t [MW]. 

'/tt ttE E  Self /Cross elasticity of demand. 

lF  Maximum capacity of line l [MW]. 

( )fr l  Primary bus of line l. 
min/max

btinc  

Minimum/Maximum incentive at bus b 

and time t for EDRP. 

U  Parameter related uncertainty budget. 

,it itP P  

Min/max generation capacity of unit i at 

time t [MW]. 
w

btP  

Predicted output level of wind generation 

unit at bus b and time t [MW]. 

pf  
Participation factor of DR programs 

implementation [%]. 
0

tP  

Initial price of energy before running DR 

programs in time t [$/MWh]. 

,i iRD RU  Ramp down/up unit i. 

,i iSU SD  Start-up and shut-down ramp rate unit i. 
SG

btslp  

The slope of each linear segment of 

linearized cost function EDRP. 

( )to l  End bus of line l. 

xl Reactance of line l. 

Variables 

,up dn

bt bta a
 

Binary variables representing the worst 

case of wind generation level. 

,u

bt bt 
 

Voltage angle of bus b at time t under 

uncertainty/ base case. 


 

The value of power imbalance in the third 

level problem. 
w

 

Worst-case of system imbalance 

,u u

bt btW W 

 

Continuous variables indicating the value 

of power imbalance at bus b and time t 

under uncertainty condition. 
SG

bt
 

The amount of incentive in each interval 

segment associated EDRP cost function. 

,sd su

it itc c
 

Cost of shut-down and start-up of unit i at 

time t. 
EDRP

btC
 

Hourly cost of EDRP at bus b. 

dr

btd
 

Demand after implementing DR programs 

in bus b and time t. 

btinc
 

The amount of incentive paid to EDRP 

participants in bus b and time t. 

btEDRP
 

Demand reduction by EDRP in bus b and 

time t. 

,it itFRU FRD
 

Upward/downward spinning flexible 

ramping reserve provided by unit i at time 

t. 

itFRN
 

Non-spinning flexible ramping reserve 

provided by quick-act unit i at time t. 

,u

lt ltf f
 

Power flow rate of line l at time t under 

uncertainty/base case. 

of
 

The value of the objective function related 

the minimum operating cost. 

,u

it itP P
 

Generation level of unit i at time t under 

uncertainty/base case. 
wu

itP
 

Level of wind power generation under 

uncertainty. 
/ /val off pkP

 

Valley/ off-peak/ peak energy tariffs in 

TOU program. 

btTOU
 

Demand reduction by TOU program. 

itv
 

Binary variable indicating the scheduling 

status of generation units in base case. 

,st sd

it itv v
 

Binary variables indicating on/off status of 

quick-act units under uncertainty conditions. 
SG

btv
 

Binary variable indicating participation 

status of load in bus b and time t for EDRP. 

 

1 Introduction 

N recent years, the maximum use of renewable 

energy resources as a principle not only in the 

planning of future power systems, but also as an 

essential factor in promoting security and energy 

independence of communities, has been considered by 

power system operators. In such a way that many 

governments are looking to get more than half of their 

electricity needs from these resources within the next 

ten years [1]. Therefore, the traditional operation of 

power systems will not meet the high penetration of 

renewable resources; because, in the operation of power 

systems with high capacity of these resources, in 

addition to the uncertainty in power generation, their 

high variability, the short-term operation will face 

serious problems. It should be noted that uncertainty 

indicates prediction error, and variability refers to 

changes in time-variable generation of these resources. 

Thus, the main problem is the existence of sufficient 

generation capacity along with the lack of ramping 

capacity, which leads to imbalance of load and 

generation, and shutdown or operation of thermal units 

outside the optimal operation point, which has made the 

short-term flexibility as an important issue in power 

system day-ahead operation planning. For this purpose, 

in the ancillary services market, the flexible ramping 

product (FRP) was introduced to cover the random 

generation of renewable energy resources [2]. 

Conventional generation resources are among the 

providers of this type of reserve, which according to 
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their technical and economic characteristics, including 

generation capacity, ramping rate, minimum up time 

and minimum down time and the costs of energy and 

reserve, start-up and shutdown, participate in power 

system day-ahead scheduling [3, 4]. For day-ahead 

scheduling, independent system operators schedule the 

system by solving a unit commitment (UC) problem, 

which results in the optimal generation scheduling [2]. 

Also, increasing the penetration of renewable energy 

resources, in the generation side has created an 

opportunity for flexible and quick-act resources such as 

gas generation units and diesel turbines in wholesale 

electricity markets so that in addition to non-quick-act 

units, the potential of such resources in day-ahead 

generation scheduling can provide the required 

flexibility of the power system. 
   On the other hand, Demand Response Programs 

(DRPs) on the demand side can convert demand-side 

resources, which are the consumers of electricity, into 

active and responsive resources to price and incentive 

signals, which can lead to significant correction of the 

system load factor that can increase the ability of the 

system to respond to the uncertainties of renewable 

resources and ramp events, while significantly reducing 

the cost of operating the system [5, 6]. Demand 

response can be in the form of reductions, changes in 

energy consumption, or both, depending on the price 

elasticity of consumer’s demand for electricity. Also, 

the capacity provided by demand response resources, 

particularly during peak periods, can be used as an 

alternative to expensive power plants with high ramping 

capacity, which will naturally increase social welfare 

and reduce electricity prices. Demand response 

programs can be classified into two categories: 

Incentive-Based Programs (IBPs) and Time-Based 

Programs (TBPs). Incentive programs are divided into 

three main subgroups, including voluntary, mandatory, 

and market clearing programs. Also, in time-based 

programs, the price of electricity will change at different 

intervals in proportion to the price of electricity supply. 

These programs do not provide any penalties or 

incentives [7]. 

   According to what was provided, some of the 

contributions of this article about day-ahead operation 

planning are: 

 Separating generation resources in the form of 

quick and non-quick-act generation units, based on 

their speed response to make optimal use of their 

ramping capacity. 

 The optimal design of demand response programs 

in day-ahead scheduling as flexibility resources in 

demand side for enhancing system flexibility, 

including incentive and time-based programs. 

 Using two-stage and tri-level adaptive robust 

optimization based on the column-and-constraint 

generation (CCG) decomposition method for 

mentioned day-ahead scheduling problem, which, 

due to the existence of optimality primal cuts of 

the problem type, has a high convergence speed. 

   Accordingly, the rest of this paper is organized as 

follows: Section 2 provides the tri-level robust operation 

planning model. In Section 3, the problem-solving 

approach is proposed. Section 4 is allocated to a 

comprehensive case study. Numerical results and 

conclusions will be presented in Sections 5 and 6, 

respectively. 

 

2 Problem Formulation 

   Problem formulation in this paper is tri-level Mixed 

Integer Programming (MIP). In the following, each 

level of the problem formulation will be introduced. 

 

2.1 First Level Problem 

min

QA EDRP EDRP

f v su

i it i it it

sd FRU

it it it

i I t T FRD

it it

FRN EDRP

it it bt

t Ti I b t T

c v c p c

of c C FRU

C FRD

C FRN C

 

  

   
  

    
   


  





  
 

 

 

 

 

(1) 

   

;  ,
b

dr w

it lt lt bt bt

i I l L to l b l L fr l b

p f f d p b

t T

    

     

 

  

 

 

 

(2) 

    
1

;   ,lt fr l t to l t

l

f l L t T
x

        (3) 

;  ,l lt lF f F l L t T        (4) 

1 ;  ,st QA

it itv v i I t T       (5) 

;  ,sd QA

it itv v i I t T      (6) 

;  , it it it it itp v p p v i I t T       (7) 

;  , it it it itp FRU p v i I t T       (8) 

;  , NQA

it it it itp FRD p v i I t T       (9) 

  ( );  ,sd sd QA

it it it it it it it itp v v p FRD p v v i I

t T

      

 
 

 
 

(10) 

0 ;   ,st QA

it i itFRN SU v i I t T       (11) 

(1 );   ,sd QA

it i it itFRD SD p v i I t T        (12) 

 

 

1 1 1

1 (1 );   , 

it it it it i it

NQA

i it it it it

p FRU p FRD RU v

SU v v p v i I t T

  



   

       
 

 
 

(13) 

 

 

1 1

1 1(1 );  , 

it it it it i it

NQA

i it it it it

p FRU p FRD RD v

SD v v p v i I t T

 

 

   

       
 

 
 

(14) 

 

 
1 1 1

1 1 1 1 1 1(1 );

  , 

it it it it it it

st sd st sd

i it it it it it it it

QA

p FRU FRN p FRD FRN

RU v v v p v v v

i I t T

  

     

     

     

   

 

 

 

 

(15) 

 

 
1 1 1

(1 );  ,

 

it it it it it it

st sd st sd QA

i it it it it it it it

p FRU FRN p FRD FRN

RD v v v p v v v i I

t T

       

       

 
 

 

 

 

(16) 
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 1 1 1

1 1 1

1

( );  , 

sd st

it it it i it it it

sd st QA

it it it it

p FRU FRN SU v v v

p v v v i I t T

  

  

     

      
 

 
 

(17) 

 1 1 1 1

( );  , 

sd st

it it it i it it it

sd st QA

it it it it

p FRU FRN SD v v v

p v v v i I t T

       

      
 

 
 

(18) 

 

 

/ / 0

0

/ / 0
24

' 0
1

  ; Β , T

val off pk

t

bt bt tt

t

val off pk

t TOU

tt
t t

t t

pr pr
TOU D E

pr

pr pr
E b t

pr



 






 

    










 

 

 

 

(19) 

0 00.5  ;val val

t tpr pr pr t T     (20) 

 ;val off pk off

t tpr pr pr t T     (21) 
0 ;pk pk

tpr pr t T    (22) 

; Β , TTOU

bt btTOU pfD b t      (23) 

; Β , TTOU

bt btTOU pfD b t       (24) 

0; b ΒTOU

bt

t T

TOU


    (25) 

; Β ,min max EDRP EDRP

bt bt btinc inc inc b t T       (26) 
1 ; Β ,EDRP min SG SG EDRP

bt bt bt bt bt

SG Lin

EDRP

C C v slp b

t T




   

 


 

 

 

(27) 
1 ; Β ,min SG EDRP EDRP

bt bt bt bt

SG Lin

inc inc v b t T


       (28) 

0 ; Β , ,SG SG SG EDRP EDRP

bt bt btv b t T

SG Lin

      

 
 

 

(29) 

'
24

'0 0
1

; ,EDRPbt bt

bt bt tt tt
tt t

t t

incinc
EDRP D E E b

pr pr

t T











 
 

   





 

 



 

 

 

 

 

(30) 

; Β , TEDRP

bt btEDRP pfD b t      (31) 

; Β , TEDRP

bt btEDRP pfD b t       (32) 

Β Β

; Tbt bt bt

b b

TOU EDRP pf D t
 

      (33) 

Β Β

; Tbt bt bt

b b

TOU EDRP pf D t
 

       (34) 

; Β,dr

bt bt bt btd D TOU EDRP b t T        (35) 

     ,  ,  ; su sd

it it it t Tt T t T
c c v i I

 
   (36) 

0,  0,  0;  , it it itFRU FRD FRN i I t T        (37) 
 

In the first level problem, the objective function (1) and 

constraints (2)-(37) include the dispatch and scheduling 

of energy and flexible ramping capacity reserve and 

optimal DRPs implementation with the minimum cost 

of reliable operation under the uncertainty of wind 

generation units. In the objective function (1), the costs 

related to generation costs in the base case, start-up, and 

shut-down of generation units, as well as the costs 

related to scheduling under uncertainty including 

upward and downward spinning ramping capacity 

reserve costs of the non-quick-act and quick-act units 

and non-spinning ramping capacity reserve cost of 

quick-act units and cost of optimal incentive-based 

DRP, are minimized. Constraints (2)-(4) represent the 

limitations of the transmission network in the base case, 

i.e. the amount of predicted net load. Constraint (2) 

relates to nodal power balance. Constraints (3) and (4) 

also represent the DC power flow and transmission lines 

capacity, respectively. Due to the ability of quick-act 

units to provide ramping capacity around their power 

output in a short period of time, constraints (5) and (6), 

including start-up binary variables ( st

itv ) and shut-down 

binary variables ( sd

itv ), have been presented. 

Constraint (7) indicates the power generation limits in 

the base case. Constraints (8)-(10) are related to the 

spinning ramping capacity reserve, which can be 

provided by non-quick and quick-act generation units 

according to their allowed generation limits (FRUit, 

FRDit). In addition, constraint (10) indicates that if a 

quick-act unit is scheduled as shut-down in uncertainty 

realization condition, it must be able to provide a 

downward ramping capacity within its power output 

limit. Constraint (11) states that if the quick-act unit had 

been scheduled off in the base case, it can provide a 

ramping capacity equal to its start-up ramp rate in 

operation condition (FRNit). Constraint (12) represents 

that if due to the uncertainty realization, it is needed for 

the shut-down quick-act unit, it can provide ramping 

capacity to its shut-down ramp rate. Constraints (13)-

(18) are related to the ability to change the power 

between two consecutive times by non-quick and quick-

act units in the base case and operation condition due to 

their ramping constraints, which can be provided by 

them. As mentioned, demand response programs can 

play an essential role in increasing system flexibility by 

modifying the system load factor and preventing severe 

ramps in net load. Therefore, in this paper, Time of 

Use (TOU) and Emergency Demand Response 

Program (EDRP) as time-based and incentive-based DR 

programs, respectively, have been considered. 

Constraints (19)-(34), Express the use of EDRP and 

TOU programs together. It should be noted that the 

EDRP program is voluntary and free of charge in which 

participants reduce their consumption in exchange for 

optimal amounts of incentives. Also, in the TOU 

program, based on energy consumption tariffs in at least 

three periods, including valley, off-peak, and peak 

periods, consumers will change their consumption 

patterns. Constraints (19)-(25) refer to the economic 

model of the TOU program. Constraint (19) represents 

the changes in the system load according to the 

approved price signals in three different periods, 

including the valley, off-peak, and peak period that 

consumers change their consumption pattern following 

these signals, self and cross elasticity. Constrains (20)-

(22) refer to the pricing policy adopted in the TOU 
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program. In constraints (23) and (24), the maximum 

amount of participation considered for the TOU 

program has been presented, either to reduce or increase 

the load. Constraint (25) states that any amount of 

reduced load in each time period must be compensated 

in other periods; In other words, in the TOU program, 

the amount of energy consumed in the 24-hour 

scheduling period must be constant. Constraints (26)-

(32) indicate the use of EDRP. According to constrain 

(38) in this program, the amount of load reduction (LR) 

by consumers in each time is proportional to the amount 

of incentives paid for them: 
 

0
; Β ,EDRP EDRPbt

bt tt

t

inc
LR E b t T

pr
      (38) 

 

   Therefore, the cost of participation is obtained by 

multiplying the reduced load and the amount of 

incentive considered for each MWh of energy, which 

can be seen in constraint (39): 
 

2

0
; Β ,EDRP EDRP EDRPbt

bt tt

t

inc
C E b t T

pr
      (39) 

 

   So constraints (26)-(29) represent the piecewise 

linearization technique based on [25] for cost function 

in constraint (39). Constraint (30) represents the 

changes in the system load according to the incentive 

signals, self, and cross elasticity. In constraints (31) and 

(32), the maximum amount of participation considered 

for EDRP has been presented, either to reduce or 

increase the load. Constraints (33) and (34) also indicate 

that the amount of participation considered for demand 

response programs (TOU and EDRP) totally per hour 

should not exceed the predetermined amount, either to 

increasing or decreasing in load goes beyond. Constraint 

(35) indicates the amount of system load after 

implementing demand response programs, including 

TOU and EDRP programs. Constraint (36) indicates the 

minimum up/downtime, and start-up and shut-down 

costs of generation units, and related details are 

provided in Appendix [26]. Constraint (37) indicates 

that the variables related to spinning and non-spinning 

ramping reserve capacity are non-negative. 
 

2.2 Second Level Problem 

max   w    
(40) 

Subject to:  

1;  Β ,up dn w

bt bta a b t T       (41) 

Δ Δ ; Β ,w dn dn wu w up up w

bt bt bt bt bt bt btp p a p p p a b t T       
 

(42) 

   max 0, max 0,
; 

w

wu w w wu

bt bt bt bt

up dn

b bt bt

p p p p
U

p p

t T



  
  

   

 



 

 

 
 

(43) 

 

   The objective function (40) and constraints (41)-(43) 

represent the second-level problem. The objective 

function (40) identifies the worst-case for nodal power 

imbalance concerning the decisions made in the first 

level problem. Constraints (41)-(43) represent the use of 

budget-constrained polyhedral uncertainty set in which 

parameter U represents the uncertainty budget and 

indicates the number of buses that simultaneously 

experience fluctuations in the wind power output and is 

determined based on the predicted uncertainty. Binary 

variables up

bta  and dn

bta  are presented to assess the worst-

case scenario for up/ down fluctuations of wind 

generation units due to the uncertainty budget. Since a 

wind unit cannot experience both up and down 

fluctuations simultaneously, constraint (41) has been 

represented. 
 

2.3 Third Level Problem 

min   u u

bt bt

b t T

W W 

 

    (44) 

Subject to:  

   

Δ Δ W W ; Β, 

b

u u u dr w

it lt lt bt bt

i I l L to l b l L fr l b

up up dn dn u u

bt bt bt bt bt bt

p f f d p

p a p a b t T

    

 

   

       

  
 

 

 

(45) 
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1

;   ,u u u

lt fr l t to l t

l

f l L t T
x
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;  ,u

l lt lF f F l L t T        (47) 

; , u NQA

it it it it itp FRD p p FRU i I t T         (48) 

 ; ,u QA

it it it it it itp FRD p p FRU FRN i I

t T

      

 
 

 
 

(49) 

0,  0; ,   u u

bt btW W b t T        (50) 
 

In objective function (44), the variables of nodal power 

imbalance under uncertainty realization conditions are 

minimized according to the decisions made in the first 

and second level problem. Constraints (45)-(47) 

represent the nodal power balance, power flow, and 

transmission lines capacity under uncertainty 

conditions, respectively. Constraints (48) and (49) 

indicate the level of power generation of non-quick and 

quick-act units under uncertainty realization conditions 

and decisions made in the first level problem. Constraint 

(50) also shows that the nodal power imbalance 

variables are non-negative. 

 

2.4 Master Problem 

   The master problem is the relaxed version of the 

problem (1)-(50). The master problem refers to the first 

stage in which, for iterations k > 1, a set of constraints 

related to operating conditions is added and is 

equivalent to constraints (45)-(49). It should be noted 

that these constraints are parameterized by the sub-

problem solved in the previous iteration. Therefore, the 

master problem in iteration k is as follows: 
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 Objective Function 1  (51) 

Subject to:  

   Constraints 2 - 37  (52) 
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(57) 

 

2.5 Subproblem 

   The sub-problem refers to the second stage and 

includes the max-min model of the second and third 

level problems, which is converted to the single level 

maximization model using dual theory and represents 

the realized uncertainties that lead to the maximum 

imbalance in the system according to the decision made 

in the master problem. It should be noted that in each 

iteration k, the outputs of the master problem including 
 k

itp ,  k

itFRD ,  k

itFRU ,  k

itFRN , and  dr k

btd enter the 

sub-problem where the worst-case of nodal power 

imbalance is determined by binary variables up

bta  and 

dn

bta , these binary variables return to the master problem 

for the next iteration. 

 

3 Solution Methodology 

   Fig. 1 shows the problem-solving procedure according 

to the iterative method based on column and constraint 

generation (CCG) algorithm. In this method, in each 

iteration, the master problem is solved based on the 

worst-case of nodal power imbalance, under uncertainty 

budget U obtained by sub-problem in the previous 

iteration (k–1), and co-optimization energy and ramping 

reserve capacity including fixed and variable generation 

costs, start-up and shut-down costs and ramping 

capacity reserve of non-quick and quick-act generation 

units to cover changes in the net load of the system with 

considering DRPs and optimal EDRP incentives in the 

minimum operation cost are done. 

   A worth point in the problem-solving process is the 

addition of primal optimality cuts for iteration k > 1, 

including constraints (53)-(57) to the master problem. 

According to Fig. 1, the problem is repeated until the 

decision made in the master problem, even in the worst-

case scenario, leads to nodal power balance. Therefore, 

in this case, with the achievement of global optimality, 

the problem solving process will stop. 

 

4 Case Study 

   To evaluate the effectiveness of non-quick and quick-

act generation separation approach along with DRPs in 

providing the required flexibility of the power system as 

well as the performance of the proposed solution 

method, a modified 24-bus IEEE Reliability Test 

System in [18] is employed which includes 26 thermal 

generation units, 24 buses, 38 power transmission lines, 

six wind power generation units, each with 160MW 

capacity in buses 3, 5, 7, 16, 21, and 23, the maximum 

system load of 3498.66 MW, and uncertainty of wind 

power characterized by a ±20% fluctuation around the 

forecast generation level. Among the 26 thermal units in 

this test system, six quick-act units, including units 6, 7, 

8, 9, 28, and 26, whose non-spinning ramping capacity 

reserve price has been considered twice the upward 

spinning ramping capacity reserve price. Assuming the 

existence of 6 wind generation units, which are the 

resources of uncertainty, the budget of uncertainty U 

can have a range of change from 0 to 6; U = 0 and U = 6 

indicate the base case and the worst-case of uncertainty 

realization in the system, respectively. Also, for 

implementing demand response programs, the power 

consumption period according to system demand is 

divided into three periods including valley (00:00-6:00), 

off-peak (6:00-16:00 and 20:00-24:00), and peak 

(16:00-20:00), which is based on the electricity 

consumption tariffs and incentive signals approved by  
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Update Loop Counter: k   k + 1   
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w
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 and abt
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Fig. 1 CCG problem-solving flowchart. 

 

Table 1 Price elasticity of demand. 
 Hours 1-6 7-16 17-20 21-24 

Valley 1-6 -0.1 0.01 0.012 0.01 

Off-peak 7-16 0.01 -0.1 0.016 0.01 

Peak 17-20 0.012 0.016 -0.1 0.016 
Off-peak 21-24 0.01 0.01 0.016 -0.1 
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ISO and also self and cross elasticity, consumers trying 

to improve their electricity consumption. The price 

elasticity of the demand according to [7] has been 

considered as listed in Table 1. 

   To evaluate the performance of flexible resources, the 

following scenarios are considered: 

1) Non-separating generation units based on their 

speed of response. 

2) Separating generation units based on their speed of 

response. 

3) Implementation scenario 2 using flexible resources 

on demand side including responsive consumers to 

TOU and EDRP. 

 

5 Numeral Results 

   In this section, to evaluate the impact of flexibility 

resources in day-ahead scheduling to providing required 

flexibility, we first examine scheduling only by 

considering flexible resources on the generation side 

and then by considering flexibility resources both on 

generation and demand sides. MIP optimizations are 

performed by GAMS software package with 

CPLEX 12.0 solver on a personal computer powered by 

a Core i5 CPU processor and 4 GB of RAM. Also, in 

performed simulations, the optimum accuracy of the 

master problem and the sub-problem are set to 10–3 and 

zero, respectively. 

 

5.1 Impact of Quick-Act Generation Resources 

   In this section, the effectiveness of classifying 

generation resources in non-quick and quick-act 

categories on mentioned test system has been 

investigated. According to Tables 2 and 3, which 

respectively are related to the unit commitment results 

in the worst case of uncertainty realization (i.e., U = 6) 

in scenarios 1 and 2, It can be seen that in the scenario 

 
Table 2 Unit commitment in the first scenario. 

 Number of units 
Hour 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
t0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 

t1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 

t2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 

t3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 

t4 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 

t5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 
t6 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 

t7 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 

t8 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 

t9 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 

t10 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 

t11 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
t12 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 

t13 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 

t14 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 

t15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t16 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
t18 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t19 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t20 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

t21 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 

t22 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 

t23 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 
t24 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 

of separation generation resources due to their response 

speed under uncertainty, the need for expensive units 

such as units 1, 2, 6, 8, and 9, to be online (vit = 1) to use 

their spinning ramping capacity reserve, will decrease 

since quick-act units with the ability to change the status 

from off to on and vice versa in a short period of time 

and providing non-spinning ramping capacity reserve, 

significantly reduced operating costs. A significant part 

of these lowered costs is related to fixed and variable 

costs of generation units. As stated, simulation results 

show the reduction in operating costs for different 

amounts of uncertainty budget. 

   Based on the simulation results, for scenarios 1 and 2, 

as the uncertainty budget increases, so does the 

operating cost since there is a need to deploy more 

ramping capacity reserve to cover changes in the power 

output of wind units. On the other hand, if we take full 

advantage of the potential of the ramping capacity of 

quick-act resources, we will see a reduction in operating 

costs for different amounts of uncertainty budget; for 

example, in the worst-case scenario, operating costs 

were reduced by $6786.6 or 0.85%.  It is worth 

mentioning that under the worst-case scenario, the 

robustness cost in the first scenario was ($803546.9-

$784333.2)/ $784333.2 = 2.45% which in the second 

scenario, it decreased to ($796760.3-

$784333.2)/$784333.2 = 1.58%. Also, as an example 

for U = 6, Fig. 2 shows the vital role of quick-act 

resources in the operation time horizon such as peak 

periods to provide the required flexibility of the power 

system. 

 

5.2 Impact Flexibility Resources both on Generation 

and Demand sides 

   In this section, the impact of DRPs as flexible 

resources in day-ahead scheduling has been discussed. 

In fact, participants in DRPs act as a responsive  
 

Table 3 Unit commitment in the second scenario. 
 Number of units 
Hour 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

t0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 

t1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 

t2 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 

t3 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 

t4 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 

t5 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 

t6 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 

t7 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 

t8 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 

t9 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 

t10 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 

t11 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 

t12 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 

t13 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 

t14 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 

t15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t16 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

t20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

t21 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 

t22 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 

t23 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 

t24 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 
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Fig. 2 Participation of spinning and non-spinning ramping 
 

capacity reserve per hour for U = 6. 

Fig. 3 Demand curve before and after DRPs. 

Table 4 TOU prices. 

Period Energy price [$/MWh] 

Valley 11.05 

Off-peak 20.9 

Peak 36.2 
 

Table 5 The effectiveness of each DRPs during peak hours. 

Hour 
Reduced load by TOU 

[MW] 
Reduced load by EDRP [MW] 

t17 398.58 294.16 

t18 402.6 297.13 

t19 402.6 297.13 

t20 386.5 285.24 
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resource to pricing and incentive signals. EDRP and 

TOU program based on 20% participation factor for 

each DR program and total participation of DRPs in 

corresponding load bus have been used simultaneously. 
EDRP runs from 7:00 a.m. to 8:00 p.m., with an 

incentive between 0 and 10 $/MWh, depending on 

optimal scheduling conditions. ISO sends optimal 

incentive signals to consumers for reducing their load 

during these hours. By solving the problem under the 

pricing and the incentive policies presented, for the 

approved prices at the time of use in Table 4 and total 

$5706.18 incentive costs for different amounts of 

uncertainty budget, the system load change is as shown 

in Fig. 3. 

   As shown in Fig. 3, during peak hours when the price 

of electricity is high, consumers are willing to shift their 

load to the valley and off-peak periods. On the other 

hand, the presence of the EDRP program is an 

influential factor in reducing the level of load during 

these hours. Therefore, according to Fig. 4, this change 

in the pattern of electricity consumption, while 

modifying the load factor from 0.83 to 0.88, can have a 

significant impact on the market-clearing price. It 

should be noted that an essential part of load factor 

correction is related to changing the consumption 

pattern in the peak period, that Table 5 shows the 

impact of each DRPs on load reduction during peak 

hours. According to this table, the TOU program with  
 

Table 6 Unit commitment in the third scenario. 
 Number of units 

hour 1 3 4 5 10 11 12 13 15 17 18 19 20 23 24 25 26 
t0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 
t1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t2 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t3 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t4 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t5 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t6 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t7 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t8 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 
t9 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 
t10 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
t11 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
t12 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
t13 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
t14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
t15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
t16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
t17 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
t18 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
t19 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 
t20 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 
t21 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 
t22 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 
t23 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 
t24 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 
 

58% influential, and EDRP program with a 42% 

influential rate, play a role in load reduction in the peak 

period, which results indicate the high importance of the 

TOU program in this period. According to Fig. 4, 20% 

participation of DRPs due to the change of marginal 

units, especially during off-peak, and peak hours and 

reducing the need for expensive units, prevents market 

price spikes, and consumers will pay less for energy 

consumption, especially during off-peak and peak 

hours. 

   According to Table 6, the use of flexible resources on 

the generation side and on the demand side in the worst-

case of uncertainty realization, i.e. U = 6 can 

significantly reduce the need for ramping capacity of 

expensive generation units like units 21 and 22 to be 

online to supply system load and cover the uncertainty 

of wind generation. According to this table, we can see 

a decrease in the number of online units from 354 cases 

in Table 2 and 335 in Table 3 to 295 in Table 6.  
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Table 7 Operating cost of each mentioned scenarios. 

Uncertainty 

budget 
Scenario1 [$] Scenario2 [$] Scenario3 [$] 

U = 0
 

784333.2 784333.2 585237.6 

U = 1
 

786999.6 786015.6 586487.5 

U = 2 790221.8 787839 587864.1 

U = 3 793183.8 789544.7 589625.5 

U = 4 797507.6 791670.5 591710 

U = 5 799543.1 794270.3 594258 

U = 6 803546.9 796760.3 596814.9 
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Fig. 5 Spinning ramping capacity reserve cost in different 
 

scenarios. 

 

It should be noted that with the implementation of the 

third scenario, according to Fig. 5, on average for 

different amounts of uncertainty budget, we see a 

reduction in the cost of  upward and downward spinning 

ramping capacity reserves by %24.6 and %13.7 
compared to scenarios 1 and 2, respectively, because in 

the third scenario due to the performance of responsive 

resources on the demand side by modifying the load 

factor of the system, severe ramps are prevented, which 

reduces the need to use the spinning ramping capacity 

reserve of expensive units. 

   Table 7 shows the operating costs for different 

scenarios. It is worth mention that in the case of 

implementation of scenario 3, respectively, on average 

for different amounts of uncertainty budget, we see a 

decrease of 25.6% and  25.3% in the cost of operating 

the system compared to scenario 1 and scenario 2, 

which shows the vital role of scenario 3 in reducing 

operating costs. 

It should be noted that the use of adaptive robust 

optimization based on column and constraint generation 

algorithm along with the proposed model to provide the 

required ramping capacity of the system, including 

separation generation resources approach based on 

response speed and changing their status to cover 

fluctuations of wind power output and also using the 

demand response programs including EDRP and TOU 

program for increasing system flexibility, has an 

efficient convergence speed where the problem has been 

converged in maximum three iterations with an average 

computational time equal to 87s for different amounts of 

uncertainty budget. To evaluate the proposed model 

under operating conditions, the out-of-sample 

method [26] was used in which, by using a uniform 

probability distribution, 10,000 scenarios related to the 

production of wind units in the mentioned generation 

fluctuation interval were generated. By setting power 

imbalances and insufficient ramping penalty to $10M, 

the results showed an imbalance in the system to 0 MW 

for different scenarios that indicate the system is robust 

against any degree of uncertainty realizations within the 

pre-specified uncertainty set. 

 

6 Conclusion 

   In this paper, the approach of separating generation 

units into non-quick and quick-act resources to provide 

the required flexibility was used. On the other hand, 

demand response programs as demand side resources 

for enhancing system flexibility, including optimal 

planning for TOU and EDRP was used. The results 

show the effectiveness of the use of flexible resources 

on demand and generation sides in the form of the 

proposed model for day-ahead operation planning 

problem under high penetration of wind generation units 

(about 27%), in a way that for different amounts of 

uncertainty budget, an average operating and robustness 

costs were reduced to 25.6% and 0.52%, respectively. 

Also, using an adaptive robust approach with column 

and constraint centration algorithm had an acceptable 

efficiency in problem-solving speed; the problem was 

solved and converged in maximum three iterations with 

an average calculation time of 87s for deferent amounts 

of uncertainty budget. 
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